

EXPLORING 3D PRINTING FILAMENTS

A Comprehensive Guide

PLA (POLYLACTIC ACID)

- Pros:
 - Easy to print, affordable
 - High rigidity and strength
 - Wide variety of colors and finishes
- Cons:
 - Low impact strength
 - Low heat resistance, deforms at ~45°C
 - Poor UV resistance, susceptible to strain over time
- Average Temperatures:
 - Hot End: 190-220°C
 - Bed: 0-60°C
- Ideal Use Cases:
 - Decorative items, indoor functional parts, projects requiring high rigidity
- Examples:
 - Statues, toys, honeycomb wall, gridfinity, shelf brackets, compost bin, indoor trash bins

TPU (THERMOPLASTIC POLYURETHANE)

- Pros:
 - Flexible and durable
 - Available in different hardness ratings
 - Good for impact absorption and seals
- Cons:
 - Tricky to print, especially without a direct drive extruder
 - Requires slower print speeds
 - Less structural strength
- Average Temperatures:
 - Hot End: 210-230°C
 - Bed: 40-60°C
- Ideal Use Cases:
 - Flexible prints, impact absorption, seals
- Examples:
 - Seals on boxes, door stoppers, table corner protectors

PETG (POLYETHYLENE TEREPHTHALATE GLYCOL)

- Pros:
 - Better heat and UV resistance than PLA
 - Good balance of strength and flexibility
 - Easier to print than ABS, warps less
- Cons:
 - Hygroscopic, requires drying
 - Sticky, can damage print surfaces and nozzles
 - Slow melting, unsuitable for high-speed printing
- Average Temperatures:
 - Hot End: 230-250°C
 - Bed: 70-90°C
- Ideal Use Cases:
 - Functional parts with moderate heat or UV exposure, parts requiring some 'give'
- Examples:
 - Vertical planters, RepRack brackets, fan ducts, replacement light diffusers

ABS (ACRYLONITRILE BUTADIENE STYRENE)

- Pros:
 - Good impact resistance, toughness, and rigidity
 - Quick melting, ideal for fast printing
 - Vapor smoothing capable
- Cons:
 - Prone to warping, needs an enclosure
 - Emits harmful VOCs, requires proper ventilation
 - Not suitable for outdoor use without protection
- Average Temperatures:
 - Hot End: 230-250°C
 - Bed: 90-110°C
- Ideal Use Cases:
 - Functional parts under sustained load, parts requiring vapor smoothing
- Examples:
 - Camera mounting brackets, filament spool rollers, electronics brackets

ASA (ACRYLONITRILE STYRENE ACRYLATE)

Pros:

- High UV resistance, great for outdoor use
- Improved resistance to environmental stress and chemicals over ABS
- Can be printed without an enclosure (if no drafts)

• Cons:

- More expensive than ABS
- Less availability and fewer color options
- Difficult bed adhesion, often requires additional adhesive

• Average Temperatures:

- Hot End: 240-260°C
- Bed: 90-110°C
- Ideal Use Cases:
 - Outdoor parts, functional parts requiring durability and UV resistance
- Examples:
 - Outdoor fixtures, automotive parts, equipment housings

HIPS (HIGH IMPACT POLYSTYRENE)

- Pros:
 - Soluble in limonene, making it ideal as a support material for ABS
 - Good impact resistance and strength
 - Easy to sand and paint
- Cons:
 - Requires careful storage as it's sensitive to moisture
 - Prone to warping, requires an enclosure
 - Not suitable for outdoor use due to poor UV resistance
- Average Temperatures:
 - Hot End: 220-240°C
 - Bed: 90-110°C
- Ideal Use Cases:
 - Support material for complex ABS prints, parts requiring easy post-processing
- Examples:
 - Support structures for ABS prints, models requiring paint or post-processing

PET (POLYETHYLENE TEREPHTHALATE)

• Pros:

- Good strength and rigidity
- Food-safe, with excellent clarity and chemical resistance
- Less hygroscopic than PETG, easier to print without drying

• Cons:

- Requires higher print temperatures
- Prone to warping, benefits from an enclosure
- Less flexible than PETG, making it more brittle
- Average Temperatures:
 - Hot End: 230-250°C
 - Bed: 75-90°C
- Ideal Use Cases:
 - Food containers, clear parts, applications requiring chemical resistance
- Examples:
 - Water bottles, food storage containers, transparent covers or cases

PLA+ OR TOUGH PLA

- Pros:
 - Improved impact resistance and flexibility compared to standard PLA
 - Easy to print with similar settings to regular PLA
 - Less brittle, making it suitable for more functional parts
- Cons:
 - Still low heat resistance compared to other engineering-grade materials
 - Slightly more expensive than regular PLA
 - May still deform under sustained strain or UV exposure
- Average Temperatures:
 - Hot End: 200-220°C
 - Bed: 20-60°C
- Ideal Use Cases:
 - Functional prototypes, parts requiring a bit more durability than standard PLA
- Examples:
 - Phone cases, mechanical parts, durable models for indoor use

PC (POLYCARBONATE)

• Pros:

- High strength and impact resistance
- Excellent thermal resistance, maintains properties under high temperatures
- Good optical clarity, suitable for transparent parts

Cons:

- Requires high print temperatures and an enclosed printer
- Prone to warping, benefits from a heated chamber
- Hygroscopic, requires drying before use

• Average Temperatures:

- Hot End: 260-300°C
- Bed: 90-110°C
- Ideal Use Cases:
 - High-strength, high-heat applications where transparency is a bonus
- Examples:
 - Clear panels, protective covers, industrial machine components

POM (POLYOXYMETHYLENE)

- Pros:
 - Low friction, high wear resistance, ideal for mechanical parts
 - Good dimensional stability and impact resistance
 - Resistant to solvents and chemicals
- Cons:
 - Difficult to print, requires specific conditions
 - Prone to warping and shrinking
 - Poor adhesion to print beds, often needs special surfaces or adhesives
- Average Temperatures:
 - Hot End: 210-230°C
 - Bed: 100-130°C
- Ideal Use Cases:
 - Gears, bushings, and mechanical parts requiring low friction
- Examples:
 - Bearings, pulleys, gears, and other precision mechanical components

TPE (THERMOPLASTIC ELASTOMER)

• Pros:

- High flexibility and elasticity, similar to rubber
- Good impact and abrasion resistance
- Skin-safe, making it suitable for wearables
- Cons:
 - Tricky to print due to its flexibility
 - Requires slow printing speeds and a direct drive extruder
 - Less structural strength compared to rigid filaments
- Average Temperatures:
 - Hot End: 210-240°C
 - Bed: 20-70°C
- Ideal Use Cases:
 - Wearables, flexible components, and parts needing impact resistance
- Examples:
 - Phone cases, wearable straps, seals, and flexible hinges

PVA (POLYVINYL ALCOHOL)

- Pros:
 - Water-soluble, making it an excellent support material
 - Biodegradable, environmentally friendly
 - Compatible with many materials like PLA, ABS, and Nylon
- Cons:
 - Extremely hygroscopic, requires careful storage and drying
 - Expensive compared to other filaments
 - Difficult to print, requiring specific settings and a well-calibrated printer
- Average Temperatures:
 - Hot End: 190-220°C
 - Bed: 45-60°C
- Ideal Use Cases:
 - Complex prints with overhangs, supports for dual-extrusion printing
- Examples:
 - Support material for intricate models, dissolvable supports for parts with internal structures

NYLON (POLYAMIDE)

• Pros:

- High toughness and flexibility, good impact resistance
- Excellent chemical resistance, ideal for industrial use
- Low friction, making it suitable for moving parts

• Cons:

- Highly hygroscopic, must be printed from a filament dryer
- Prone to warping, requires an enclosure and careful temperature control
- Difficult to print due to high melting point and moisture sensitivity

• Average Temperatures:

- Hot End: 240-270°C
- Bed: 70-100°C
- Ideal Use Cases:
 - Durable parts, industrial applications, parts requiring flexibility
- Examples:
 - Gears, hinges, automotive parts, tools, and workshop components

